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ABSTRACT Not much is known about the mobility of synaptic vesicles inside small synapses of the central nervous system,
reflecting a lack of methods for visualizing these dynamics. We adapted confocal spot detection with fluctuation analysis to
monitor the mobility of fluorescently labeled synaptic vesicles inside individual boutons of cultured hippocampal neurons. Using
Monte Carlo simulations we were able to propose a simple quantitative model that can describe vesicle mobility in small hippo-
campal boutons under resting conditions and different pharmacological treatments. We find that vesicle mobility in a time window
of 20 s can be well described by caged diffusion (D ; 53 10�5 mm2/s, cage sizes of ;50 nm). Mobility can be upregulated by
phosphatase blockage and increased further by actin disruption in a dose-dependent manner. Inhibition of the myosin light
chain kinase slows down vesicle mobility 10-fold, whereas other kinases like protein kinase C (PKC), A (PKA), and calmodulin
kinase II (caMKII) do not affect mobility in unstimulated boutons.

INTRODUCTION

Maintenance of synaptic transmission requires retrieval of

exocytosed vesicles as well as transport of newly formed

vesicles into the correct pools; the underlying mechanisms,

however, are poorly understood, yet of seminal interest (1,2).

A puzzling question has been whether synaptic vesicles

within the synapse are exclusively transported in an active

manner or also passively by diffusion and, even more im-

portant, what molecular machinery is controlling vesicle dy-

namics. Studies addressing these questions are scarce because

of a lack of suitable techniques.

Most information about vesicle dynamics comes from

ultrastructural analysis (3–5). Real time imaging of synaptic

boutons labeled with the styryl dye FM 1-43 yielded a

plethora of information about the exoendocytic cycling of

vesicles but allowed only indirect conclusions about vesicle

mobility. This way it was shown in hippocampal synapses

that inhibitors of myosin light chain kinase (MLCK) reduce

vesicle recycling (6), consistent with an involvement of

molecular motors. Evidence for molecular motors targeting

synaptic vesicles, however, is very poor (see Doussau and

Augustine (7) and Rizzoli and Betz (8) for reviews). On the

other hand, a growing body of physiological evidence sup-

ports the notion that synaptic vesicles are sorted differen-

tially and nonrandomly into different pools, although the

spatial organization of pools is a matter of debate (5,9–13).

In past years evanescent wave microscopy was used to

study the dynamics of vesicles in endocrine cells (14) and

in goldfish bipolar cell terminals (15). However, since

hippocampal synapses cannot be easily separated from the

postsynaptic compartment, this powerful tool could not be

used so far in small boutons.

Fluorescence recovery after photobleaching (FRAP)

allowed visualization of vesicle dynamics in small boutons

(16,17). Hippocampal boutons, however, had to be stained

by strong stimuli, since FRAP experiments require large

numbers of moving particles and give no meaningful results

in the limit of the stochastic behavior of a few particles.

Here we present the application of confocal spot detection

combined with fluorescence fluctuation analysis (FFS) (18).

This method is easy to set up, is noninvasive, has a time

resolution of milliseconds, and allows investigating the be-

havior of very few vesicles.

First we confirmed the reliability of our technique using

pharmacological treatments expected to affect vesicle mo-

bility and this way demonstrate its potential for probing the

mechanisms of vesicle mobility down to the molecular level.

We then determined to which extent certain kinases and

phosphatases regulate overall vesicle mobility. Our results

are in favor of a model where synaptic vesicle movement is

controlled and restricted. As shown by Monte Carlo sim-

ulations, our results can be quantitatively well described by

caged diffusion with typical cage sizes of 50–100 nm and

a diffusion constant of ;5 3 10�5 mm2/s.

METHODS

Hippocampal cell culture

Hippocampal neurons from regions CA1–CA3 of 1–3-day-old Wistar rats

were cultured according to previous protocols (19). After 14–20 days in

vitro, cultures were used for experiments.

Experimental conditions and FM dye loading

Coverslips were mounted in a perfusion chamber on a movable stage of an

inverted microscope equipped for FCS measurements (Zeiss Confocor 1,
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Oberkochem, Germany). Cells were perfused at room temperature in a

modified Tyrode’s solution consisting of 150 mM NaCl, 5 mM KCl, 2 mM

CaCl2, 1 mM MgCl2, 10 mM Hepes (pH 7.4), 30 mM glucose. For electric

field stimulation 10 mM 6-cyano-7-nitroquinoxaline-2,3-dione and 50 mM

D,L-2-amino-5-phosphonovaleric acid were added to prevent recurrent

activity.

Synaptic boutons were labeled by electric field stimulation (1-ms current

pulses of 40 mA and alternating polarity delivered by platinum electrodes

spaced at ;10 mm) in saline containing 15 mM FM 1–43.

If not stated otherwise, one of the three following staining protocols was

used.

Staining protocol for FFS experiments

A total of 120 APs at 10 Hz were evoked in the presence of 15 mm FM 1–43

(FM was washed out after 60 s). Two to three synapses on one neuronal

process (clearly visible on images taken with a charge-coupled device

(CCD) camera) were measured per coverslip. Initially functionality was

checked by destaining with 2 3 600 APs (CCD images of the respective

areas were taken immediately before and after the stimulation). Since fail-

ures were not observed when selecting fluorescent spots lying in a row on

top of a neuronal process, in later experiments 0.5 mM tetrodotoxin was

applied to prevent rundown, and the destaining step was omitted.

Maximal staining protocol for laser scanning microscopy

A total of 600 APs at 20 Hz were evoked during 60 s bath application of

15 mm FM 1–43. Destaining with 3 3 600 APs.

Minimal staining protocol for laser scanning microscopy

The culture was stimulated with 5 APs at 5 Hz during a 10 s bath application

of 15 mm FM 1–43. Destaining with 3 3 600 APs.

Confocal spot detection and fluorescence
fluctuation spectroscopy

The laser beam of an argon ion laser (488 nm) passes a lens system for beam

expansion coupled to an Axiovert 135 (ConfoCor, Zeiss) and is focused with

a 63 3 /1.2 W objective. The emitted photons passing the pinhole are

collected by an avalanche photo diode (APD) (SPCM-AQ-231, EG&G

Optoelectronics, Vaudreuil, Canada). A 530–600 or 520–600 nm emission

filter was used (Zeiss, and AHF, Tübingen, Germany). Single photon counts

are processed online by a hardware correlator (ALV-5000, ALV, Langen,

Germany) as well as by a counting card (CIO-CTR05, Measurement Com-

puting, Middleboro, MA) in a separate PC. To avoid photobleaching and

phototoxic effects, synaptic boutons were illuminated for only 10 ms per

100 ms time interval, and data were acquired at 10 Hz sampling rate if not

stated otherwise in the text. The excitation power was chosen to be ;50 nW

(measured in front of the objective back pupil). Fast shuttering of the laser

light was accomplished by an acousto-optic modulator (AA-MTS.110, AA

Opto-Electronique, St. Remy les Chevreuse, France).

Before each measurement our detection volume was calibrated using the

fluorophore Rhodamine 6G by standard fluorescence correlation spectro-

scopical measurements (20). A focal plane above the cell layer was chosen.

Fluorescent beads used in some experiments were 40 nm in size (Fluo-

Spheres 505/515, Molecular Probes, Eugene, OR).

Offline autocorrelation and powerspectral analysis was performed with

self-written macros in PV-WAVE (Visual Numerics, San Ramon, CA) or

IgorPro (Wavemetrics, Lake Oswego, OR).

Please note that for comparison of power spectra and variances, it is

important to work with boutons of similar brightness. We discarded very

dim boutons (mean , 6 kilocounts per second, kcps) and pooled boutons

with similar fluorescence intensities, such that the standard deviation of the

average fluorescence is ,40%. This way we avoid large offsets in the power

spectra simply reflecting different numbers of stained vesicles, which would

make comparison under different conditions more difficult.

Fluorescence microscopy

To select a region and maneuver a single bouton into the confocal spot,

images were taken by a cooled slow-scan CCD camera (PCO SensiCam,

Kelheim, Germany) and a modified filter set (DCLP 505). Epifluorescence

illumination was achieved by repetitive Xe-arc lamp illumination at 475 nm

(Monochromator Polychrom II, T.I.L.L. Photonics, Gräfelfing, Germany).

Exact positioning in the x, y plane was achieved by stepwise movement of

the motorized stage (Märzheuser, Wetzlar, Germany) until a maximum

signal was obtained with the APD. For positioning in the z direction, con-

focal z scans were taken and the objective was moved to the position that

gave a maximum signal.

Laser-scanning microscopy

Images were taken on a Leica SP2 confocal scanning microscope with a

63 3 /1.2 W objective (Leica Microsystems, Mannheim, Germany) using an

argon ion laser (488 nm) for excitation and APDs in photon counting mode

(only operated in the linear range, ,2 MHz) as detector. The pixel dwell

time was kept constant, and the same emission filters (530–600 nm or

520–600 nm) were used as for the confocal spot experiments. The detected

fluorescence signal is given in counts.

For selecting boutons we followed a protocol similar to that of Ryan et al.

(32) and Murthy and Stevens (31). A fluorescent spot was visible after

minimal staining of the bouton which lost its fluorescence after 3 3 600

APs. The intensity was measured by centering a circular region of 13 pixels

(1 pixel ¼ 58 nm) on the fluorescence spot and subtracting an image taken

after complete destaining with 3 3 600 APs. To avoid a bias caused by out-

of-focus spots, we performed z scans and selected always the plane of best

focus. Boutons whose DF signals (intensity difference before and after

destaining) were ,25 counts, corresponding to 1.5 times the standard

deviation of the residual background distribution (r), were considered to

be below threshold and not included in the analysis (for further details, see

Fig. 3). The existence of a functional synapse was confirmed by a subse-

quent round of strong staining (2 3 600 APs), which resulted in a bright

fluorescent spot. The fluorescence from this spot could be released with

another destaining stimulus of 3 3 600 APs. These criteria select for func-

tional synapses that were stained during the minimal staining protocol with

at least one vesicle.

Monte Carlo simulation of confined
vesicle movement

The confocal detection volume along the optical axis extends significantly

beyond the synaptic bouton, such that movements in the z direction do not

significantly contribute to fluctuations (21). It was thus sufficient to simulate

movement of vesicles within the x, y plane (Fig. 1).

For this, vesicles were placed at random positions within a square of 500

nm edge length. Since the detection volume has an e�2 radius of 170 nm,

vesicles outside this square do not contribute significantly to overall fluo-

rescence. Vesicles were allowed to undergo a random walk in a confined

region (circular cage) according to p ¼ ðD3 t=h2Þ, with p being the

probability to jump to the next grid point, D being the diffusion coefficient, t

the time step (0.01 ms), and h the grid space constant (1 nm). The object is

reflected if it hits the borders of the predefined cage. The detection volume

was assumed to be centered on the synapse. Vesicles were simulated as

dimensionless fluorescent point sources. Simulated cage sizes (radii) thus

give the width of free space around a vesicle, and the vesicle radius would

have to be added to a given cage size to reflect its real radius.
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Since a synaptic vesicle is small compared to the detection volume, it can

be assumed nonextended without significant error. Its average fluorescence

in the center of the beam waist under our measurement conditions was

1.573 23 sqrt(8) kcps ¼ 8.88 kcps (cf. Results). With the experimentally

determined Gaussian illumination profile in the x, y plane (e�2 radius of

170 nm), the simulated trajectory for each vesicle was transformed into a

fluorescence time series. The two-dimensional grid covers ;1/3 of the

whole bouton. Thus, with on average 24 stained vesicles in boutons

stimulated with 120 APs (see Fig. 3), intensities of 8–10 simulated

trajectories had to be integrated to give similar mean fluorescences as

experimentally measured. To such a simulated time series, photon shot noise

was added by drawing random numbers from a Poisson probability

distribution with an expectation value given by the actual fluorescence.

Random walk simulations were performed for a time period of 120 s and the

integrated fluorescence sampled at 10 Hz identical to the experimental

conditions. All further analysis of the fluorescence fluctuation traces is

identical to the analysis performed on measured data. Each simulation is

repeated 5–10 times and results are averaged. Error bars reflect standard

error of the mean.

RESULTS

Confocal spot detection in resting
hippocampal boutons

Most synaptic boutons in the mammalian central nervous

system are too small to be investigated directly with elec-

trophysiological tools on the single synapse level. In the past,

however, optical methods like confocal spot detection tech-

niques in combination with fluctuation analysis have been

used successfully to measure fast calcium dynamics in a

cultured neuromuscular junction preparation or cerebellar

synapses (22,23). In principle, the same methodology should

unmask some of the basic properties of the synaptic vesicle

cluster; if it was possible to detect a confocal spot within the

synaptic bouton (Fig. 1 and Fig. 2, a and b), any movement

of fluorescently stained synaptic vesicles in this detection

volume should result in upward and downward deflections of

fluorescence (Fig. 2 c). From ensemble fluctuations of such

recordings it should then be possible to derive information

about the number of vesicles in the volume as well as their

dynamics, i.e., their mobility and movement, either by au-

tocorrelation (ACF) analysis or directly by variance analysis

(24,25). We attempted to do so and calibrated our spot de-

tection system (see Methods) yielding an apparent detection

volume of Vdet ; 0.06 fl (1/e2 radius in the x, y plane, r0 ¼
0.17 mm, and along the optical axes z0 ¼ 1.03 mm, see

Fig. 1). For comparison the volume of a typical bouton

with a diameter of 1 mm (13) is ;0.5 fl; ;50% of the con-

focal detection volume extends below and above the bouton

along the optical axis, such that the detected bouton vol-

ume is ,1/9 of the total bouton volume.

We next stained individual synaptic boutons with the

styryl dye FM 1–43 (26) by applying 120 action potentials

(APs) at 10 Hz. A single identified bouton was then moved

into the focal plane with its fluorescence maximum (Fig. 2,

b and c, cf. Methods). As can be seen in Fig. 2 c large macro-

scopic fluctuations of fluorescence intensity around a mean

value of ;13 kcps can be observed in an unstimulated

bouton. After gently fixing boutons with 4% paraformalde-

hyde, these macroscopic changes in fluorescence vanished

completely (Fig. 2 c, black trace), showing that the origin of

fluctuations is biological. Fluctuations could arise from

whole bouton movements as well as from movement of

vesicles in the detection volume. In fact we did also observe

in very rare cases such bouton movements, which occurred

FIGURE 1 Schematic of model for simulating confined synaptic vesicle

movement. A sketch of the confocal detection volume (rxy ¼ 170 nm,

structural parameter ;6) is overlaid on the outline of a typical synapse with

Ø ; 1 mm. Since the detection volume is extending in the z direction by

approximately a factor of 1.8, only movements in the x, y plane will

significantly contribute to fluctuations. Vesicles were simulated as

nonextended fluorescent objects and placed at random positions in a square

of 500 nm edge length. Since the detection volume has an e�2 radius of 170

nm, vesicles outside this square do not contribute significantly to overall

fluorescence. Vesicles were allowed to undergo a random walk (shaded

lines) within a confined region (for illustration purposes, three confined re-

gions are shown as dashed ellipses). The space constant of the grid was 1 nm.
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on a slower timescale (.20 s) and eventually led to a loss of

the signal. These slow movements (.20 s) resemble the

well-studied spine dynamics (27). Such whole bouton or

spine movements are, however, mainly prominent at 37�C
and especially in young cultures (28) and strictly dependent

on actin, i.e., they are easily blocked by cytochalasin D (CD).

Thus, we conducted several experiments using different

drugs that destabilize actin filaments and tubulins but did not

detect any effect with our method (see Fig. 5 and supple-

mentary figures). Also we limited our analysis to fluctuations

occurring on timescales faster than 20 s, thereby minimizing

the contribution of slow dendritic, axonal, or spine rearrange-

ments.

Variance depends on the number of stained
vesicles in the detection volume

The time-averaged mean fluorescence scales with the aver-

age number of fluorescent objects in the detection volume,

whereas the variance reflects the mobility of the objects. If

fluctuations were indeed solely caused by movement of

individual stained vesicles within the focal plane rather than

by concerted movement of the whole synaptic vesicle clus-

ter, the variance of the fluorescence traces should depend on

the number of stained vesicles, i.e., on the mean fluorescence

in the detection volume. For the case of concerted move-

ment, the variance should not depend on the mean fluores-

cence (after removing photon shot noise, see Methods).

Indeed the variance increases with the mean bouton fluores-

cence (Fig. 2 d) although there is some scatter, probably

reflecting bouton-to-bouton variability of vesicle mobilities.

A tighter correlation is expected if it was possible to measure

the very same bouton after FM loading with stimuli of dif-

ferent lengths. Experimentally this is not feasible.

For the case of one species of freely and independently

moving particles, the slope in Fig. 2 d should correspond to

the single particle fluorescence contribution. The average

number of particles in the detection volume then would be

given by ÆNæ ¼ ðmean2=variance3 gÞ, where the geometry

factor g is sqrt(8) for a three-dimensional Gaussian and 2 for

a two-dimensional Gaussian illumination profile (29). If we

calculate the number of vesicles this way for our experi-

ments, we end up with ;50–100 vesicles. This number is

higher than the estimated size of the recycling pool (4,30–

32), especially when considering that we sample ,10% of

the whole bouton. This indicates that the model of freely

diffusing particles typically used in autocorrelation analysis

does not approximate the movement of vesicles tightly

packed and clustered in a synaptic bouton. Thus, the single

vesicle fluorescence contribution has to be determined inde-

pendently.

Determination of the fluorescence intensity
contribution of a single vesicle

The basic idea is to express the average brightness of a single

vesicle in equivalent fluorescent bead units and to determine

the average fluorescence contribution per bead in confocal

spot detection experiments by standard ACF analysis, which

can be easily performed for beads in solution. We first

stimulated hippocampal boutons in the presence of 15 mM

FIGURE 2 Confocal spot detection of stained synaptic vesicles in resting

boutons reveals macroscopic fluctuations reflecting vesicle movement. (a)

Fluorescence image of an exemplar hippocampal bouton 20 days in vitro.

stained with 15 mM FM 1–43 by electric field stimulation (120 APs, 10 Hz).

Scale bar is 1 mm. After dye washout (10 min), a fluorescence image was

taken and a single identified bouton was placed in the center of the laser

beam. (b) A z scan through the bouton was performed for positioning in the

focal plane. (c) Exemplar spot confocal fluorescence time course of a resting

bouton (shaded) measured for 10 min (sampling rate 2 Hz, with 6 ms

illumination of the sample per interval). Large up- and downward steps in

fluorescence can be seen signifying synaptic vesicle movement in and out of

the detection volume. For comparison, the time series of a bouton in

a preparation fixed with 4% paraformaldehyde (black). Note the slight

decrease in the fluorescent signal that either arises from slight ‘‘stage drift’’

or slight concerted movement of fluorescent vesicles on a very slow time-

scale (bleaching was minimal under these measurement conditions). (d) Plotted

is the variance of 229 individual recordings from control cells versus their

mean. Data were fit with a line yielding an intercept of �0.02 6 0.27 and

a slope of b ¼ 0.103 6 0.018, i.e., a variance-over-mean ratio of ;0.1 for

control cells.
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FM 1–43 with only 5 APs (minimal staining protocol) and

imaged boutons using laser scanning microscopy. We then

measured the intensity of individual fluorescence puncta

within a circular region (Ø ¼ 0.75 mm) before and after

destaining (3 3 600 APs) and plotted the intensity differ-

ences DF given in counts in a histogram (Fig. 3 e). A

multimodal distribution with equally spaced peaks was

obtained as described previously (30–32), indicating that in

most cases, where FM 1–43 was taken up, only one, two, or

three vesicles were stained. These fluorescent puncta (Fig.

3 a), which can be destained by APs (Fig. 3 b), show a

fluorescence distribution like the measured point spread

function (PSF) of 40-nm fluorescent beads (;340 nm at full

width half-maximum of the PSF) and are absent if no APs

are triggered during dye application. The histogram is well fit

with a multimodal distribution, yielding a single vesicle

fluorescence of 96.8 counts (see figure legend and Methods

for details). The presence of an active synapse was verified at

the end of each experiment by successful dye uptake and

release under strong stimulation (maximal staining protocol

600 APs at 20 Hz, destaining with 3 3 600 APs, Fig. 3, c and

d). A fluorescence histogram of maximally stained boutons

is shown in Fig. 3 f. Since fluorescent styryl dye uptake was

shown to be quantal (although release might occur in

subquanta), the intensity of the whole synapse scales with

the number of vesicles turned over during stimulation

FIGURE 3 Determination of single vesi-

cle fluorescence contribution in FFS mea-

surements. (a and b) Fluorescent puncta

with similar appearance as 40-nm fluores-

cent beads are visible after very week

stimulation with 5 APs at 5 Hz during a 10

s application of 15mM FM 1�43. Scale bars

are 1 mm (a). FM dye fluorescence is lost

after applying 3 3 600 APs (b). At the

beginning of every experiment, a z stack of

the region of interest was obtained. The

fluorescence (in counts) of a punctum was

determined as the intensity difference be-

tween images in the plane of best focus

before and after a destaining stimulus of

33 600 APs in a circular region of 13 pixels

(1 pixel ¼ 58 nm). The existence of

a functional synapse was confirmed by a

subsequent round of strong stimulation (600

APs at 20 Hz during 60 s application of 15

mm FM 1–43), which resulted in a bright

fluorescent spot (c). The fluorescence from

this spot could be released with 33 600 APs

(d). Note that these images were acquired at

;12 times lower laser intensity than in a and

b. Scale bars are 1 mm. (e) Histogram of

fluorescence intensities of puncta (deter-

mined as difference between a and b) for 5

APs shows a quantal distribution, which

could be fit with a sum of three Gaussians

(black line) according to the model of

Murthy and Stevens (31) (the individual

Gaussians for peak 2 and 3 are also shown in

dashed lines): +3

k¼1
AK3expð�ð1=2Þ�

ððx � mkÞ2=c2
mððmk1rÞ2

1r2Þ1c2
vm

2kÞ; with

peak spacing m, amplitude of each peak A,

and residual background fluorescence r. The

coefficient of variation for measurements cm

¼ 0.08 was estimated from repeated measurements of fluorescent puncta; the coefficient of variation of vesicle surface area cv has been estimated by Murthy and

Stevens to be 0.2 (31). The residual fluorescence after the destaining stimulus was found to be r¼ 40 counts on average. The fit yields a single vesicle fluorescence

intensity of m¼ 96.8 6 3.2 counts. ( f ) Fluorescence intensity (DF) histogram of fully loaded boutons (loaded with 3 3 600 APs at 20 Hz during 180 s of dye

application and destained with 33 600 APs) yields an average intensity of 51376 122 counts. Thus a fully stained bouton contains;52 stained vesicles, which is

in good agreement with findings in the literature (30–32). Note that some boutons failed to take up dye during the 5 AP stimulus (see (a) and (c)). (g) Fluorescence

intensity (DF) histogram of boutons stained with 120 APs (at 10 Hz, 1 min dye application) as in the FFS experiments. The average bouton intensity was found to

be 23536206 counts corresponding to;24 labeled vesicles. (h) Fluorescence intensity histogram of 40-nm fluorescent beads settled on a cell layer (plotted isDF

determined by subtracting the background). Images were taken as in a. A single Gaussian fit yields an average intensity of 48.66 1.2 counts. A single vesicle (see

a and d) is thus ;2-fold brighter than a bead. (i) Autocorrelation of beads diffusing freely over a cell layer (measuring conditions as in confocal spot detection

experiments). A fit with a three-dimensional diffusion model gives a diffusion time of tD ¼ 1.65 ms and N¼ 8.96 beads, corresponding to 4.44 6 0.06 kcps per

bead (cpb).
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(30,32,33). A single peak around 5137 counts is observed for

boutons that were fully loaded (2 3 600 APs at 20 Hz, 120 s

FM dye application, and destaining with 3 3 600 APs),

indicating that for this load ;52 vesicles are turned over and

stained on average, which is in good agreement with the

literature (30,32,33). Next we stimulated synaptic boutons

with 120 APs, i.e., the same stimulus as in the confocal spot

detection experiments (destaining with 2 3 600 APs). The

histogram in Fig. 3 g shows that under these conditions 24

vesicles are stained on average.

We next determined the intensity of 40-nm fluorescent

beads (which were allowed to settle on a neuronal cell layer)

under the same imaging conditions to be 45.6 counts (Fig.

3 h), i.e., approximately half the counts of a single vesicle.

Since both FM 1–43 and fluorescent bead measurements

were performed with the same excitation wavelength and

emission filter characteristics as in the confocal spot detec-

tion experiments, this ratio is the same for both setups. The

single bead fluorescence for confocal spot detection was

1.573 sqrt(8) kcps, as determined from the amplitude of the

ACF and the mean fluorescence (see Fig. 3 i) or directly by

variance analysis, which returns equal results (24).

Note that the factor sqrt(8) relates the average fluorescence

measured to the true fluorescence of a bead placed in the

center of the illumination profile (25,29). With a vesicle/bead

fluorescence ratio of ;2, a single vesicle in the center of the

beam waist contributes on average 1.573 23 sqrt(8) kcps ¼
8.88 kcps.

Quantitative description of vesicle mobility in
small synaptic boutons

With average count rates of 10–20 kcps (see Table 1), we

estimate that on average ;3 stained vesicles are present in

the detection volume, compared to ;25 stained vesicles in

the whole bouton (Fig. 3 f ). This agrees well with the fact

that we sample only ;1/9 of the total bouton volume.

In contrast a number of 50 and more was calculated from

the inverse of the ACF amplitude or by variance analysis (see

above). This discrepancy could arise from an immobile frac-

tion of vesicles contributing only to the mean fluorescence

but not the variance (24,25). The mobile fraction can be

calculated from ðNm=NtÞ ¼ ðg=cpvÞðvariance=meanÞ (cpv ¼
counts per vesicle in the center of the beam ¼ 23 1.573 sqrt

(8) as measured; g¼ 2 for a two-dimensional Gaussian; Nm ¼
number of mobile particles, and Nt ¼ total number of

particles). For control conditions this would yield a mobile

fraction of only ;2–4%, a number difficult to interpret

considering that only;3 vesicles are on average present in the

detection volume. This suggests that all vesicles display a high

degree of immobility, or put differently, all vesicles are highly

confined in their movements.

Thus, for a quantitative characterization it seems reason-

able to assume that vesicles are anchored at certain positions

and can only move in a restricted space. With this picture

of a vesicle cluster in mind we performed Monte Carlo

simulations (see Methods for details), where vesicles were

placed randomly within a synapse with the detection volume

centered at the bouton midpoint. Vesicles were only allowed

to freely move within a confined cage (radius ¼ 12.5–200

nm). For simplicity this movement was modeled as a random

walk with diffusion coefficients ranging from D ¼ 5 3 10�3

to 5 3 10�6 mm2/s, i.e., with values as found in other prep-

arations (14,15,34,35).

The model has only two free parameters that can be es-

timated from the two observables, the shape of the power

spectral density (PSD) and the variance. As stated above the

average fluorescence is a direct measure of the number of

particles and was chosen in the simulations to match the

experimental mean fluorescence (;3 vesicles in the de-

tection volume). In general, increasing the diffusion constant

or decreasing cage size leads to high frequency components

in the PSD function.

An excellent agreement between model and experiment

was obtained for cage sizes between 50–100 nm and a dif-

fusion coefficient of D ¼ 5 3 10�5 mm2/s for control condi-

tions (see Fig. 4, a, c, and f ).

To further test this model, we attempted to modulate the

vesicle mobility by different pharmacological means ex-

pected to significantly change mobility. We analyzed for

each condition the PSD in the frequency range of 0.05–5 Hz

(the given borders by filtering and our sampling frequency)

and the variance-over-mean ratio as an index of mobility. In

principle the autocorrelation function (ACF) of the time

series of fluctuations (36,37) should yield the same infor-

mation as the PSD, as both form a transform pair. In praxis,

however, a proper interpretation of the ACF by fitting requires

a priori knowledge about the underlying process, and ACF

analysis of filtered data is even more difficult. Exemplar ACFs

of unfiltered fluctuation time series for control and fixed

boutons are shown in the supplementary material (Fig. S1).

Movement of synaptic vesicles is active and
controlled by MLCK

The MLCK blocker ML-7 has been shown to decrease the

fraction of releasable vesicles in hippocampal boutons,

pointing to a role of MLCK in vesicle recruitment, since

endocytosis seemed to be normal after drug application (6).

To test whether this decrease in the fraction of releasable

vesicles can be directly related to a mobility change of ves-

icles, we applied confocal spot detection and compared the

PSD of vesicle mobility under control conditions with the

one after ML-7 treatment (Fig. 4).

As can be seen in the fluorescence time course in. Fig. 4,

a and b, fluctuations are clearly reduced after ML-7 treatment.

Accordingly the PSD shows a clear reduction of fluctuations

in the range of 0.05–1 Hz (Fig. 4 e). Judging from the variance

analysis in Table 1 we can see a small decrease in the variance-

over-mean ratio (p ¼ 0.067, t-test). Thus using combined
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confocal spot detection and variance analysis, we could verify

a reduction of vesicle mobility by ML-7 at the level of a few

vesicles, verifying directly that vesicle movement is controlled

by molecular motors as suggested previously (6).

For ML-7 we observed a reduction of the power in the

frequency band between 0.05 and 1 Hz as well as a decrease in

the variance. Monte Carlo simulations show (Fig. 4, c, d, and

f ) that this can be explained by a 10-fold reduction in the

diffusion coefficient, whereas the cage size remains unchanged.

It is known that ML-7 and ML-9 can also target PKC and

PKA at higher concentrations (38). Thus, we tested whether

more specific activation of PKC with 200 nM phorbol 12

myristate 13 acetate or of PKA with 10 mM forskolin also

alter vesicle mobility. No significant change was found (see

Supplementary Material Figs. S2, S3, and S4, and Table S1).

Similarly inhibition of both kinases by either 1 mM

bisindolylmaleimide (against PKC) or 100 mM Rp-8-Br-

cAMPS (for blocking PKA) did not affect vesicle mobility

under resting conditions (see supplementary material, Figs.

S5 and S6, and Table S1).

Staurosporine can also reduce vesicle mobility,
probably by acting on MLCK

In the past, the PKC blocker staurosporine has been shown to

decrease vesicle mobility (16). However experiments focus-

ing on destaining efficiency of FM 1–43 after staurosporine

treatment (19,39,40) were also in line with a shift in the

mode of exoendocytosis from a full collapse to a transient

fusion pore opening (‘‘kiss-and-run’’), such that FM 1–43 is

only partially released during exocytosis. In all cases

staurosporine had to be preincubated for 1 h at a concentra-

tion of 1 mM, conditions under which it also blocks MLCK

(41). We challenged hippocampal boutons with 1 mM

staurosporine and tested its effect on vesicle mobility im-

mediately (Fig. 5 a) and 1 h after application (Fig. 5 b). Only

in the latter case we found a clear decrease of vesicle mo-

bility. This result together with the data for more specific

PKC and PKA blockers and activators in resting boutons

suggest that the well-described staurosporine effect is not

mediated by PKC. At this high concentration a number of

kinases will be blocked including MLCK. Since the measured

reduction in vesicle mobility is indistinguishable from the

ML-7 action, it is highly likely that most of the staurosporine

effect on vesicle mobility and reserve pool mobilization is due

to reduced active transport by blocking MLCK.

Involvement of cytoskeletal elements

To test the involvement of cytoskeletal elements like actin

filaments and tubulins in synaptic vesicle movement, we

applied either cytochalasin D (CD, 10 mM, Fig. 5 c) and

latrunculin B (LB, 1 mM or 25 mM, supplementary Fig. S7,

TABLE 1 Variance analysis for different experimental conditions

Number of

measurements n

Mean ÆF(t)æ
[kcps]

Variance ÆdF(t)2æ
[kcps2]

t-test variance-over-mean

p-value

See Fig. 4

15 mM ML7 14 9.98 6 1.09 0.54 6 0.09
0.0627Control 13 10.70 6 0.78 1.38 6 0.30

See Fig. 5

1 mM acute staurosporine 13 11.89 6 1.34 1.50 6 0.37
0.4419Control 6 13.99 6 1.86 1.46 6 0.41

See Fig. 5

1 mM preincubated staurosporine 11 12.59 6 1.22 0.48 6 0.12
0.0337Control 12 9.71 6 0.76 1.15 6 0.32

See Fig. 5

10 mM CD 9 14.30 6 0.88 1.15 6 0.27
0.2120Control 12 15.19 6 1.17 1.87 6 0.58

See Fig. 5

25 mM LB 13 12.63 6 0.57 0.99 6 0.34
0.4259Control 10 12.35 6 1.23 0.76 6 0.25

See Fig. 6

5 mM OA 10 14.87 6 1.60 5.11 6 0.73
0.0007***Control 14 13.51 6 0.82 2.42 6 0.52

See Fig. 6

5 mM OA 9 12.31 6 0.84 2.81 6 0.46 0.0020**

5 mM OA 1 1 mM LB 11 12.90 6 0.82 2.38 6 0.37 0.0055**

5 mM OA 110 mM LB 6 14.29 6 1.83 3.59 6 0.75 0.0061**

5 mM OA 125 mM LB 6 14.66 6 2.30 5.00 6 1.43 0.0134*

Control 11 13.43 6 1.17 1.40 6 0.27

Tabulated are, for each experimental condition, the number of boutons measured (n), fluorescence mean (kcps), and variance (kcps2), as well as the t-test

p-values for the variance-over-mean ratios between control measurement and the respective pharmacological treatment indicated in the first column. Errors

are given in mean 6 SE. Asterisks after p-value indicate significant differences to control for levels 0.02 (*), 0.01 (**), and 0.001 (***).
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Fig. 5 d ) to shift the equilibrium from F-actin to G-actin or

colchicine (supplementary Fig. S8) to destabilize microtu-

bules. Interestingly, none of these maneuvers affected vesicle

mobility. If, however, vesicle recruitment depended on

active transport by myosins, actin depolymerization should

influence vesicle transport and thus mobility. This unex-

pected finding, however, corroborates the notion that the ob-

served fluctuations are not caused by synapse movement. The

latter is blocked completely by cytochalasin and latrunculin,

which have been shown to block spine movement com-

pletely (27). One explanation might be that vesicles within

the synaptic vesicle cluster are held together by other pro-

teins like the phosphoprotein synapsin (see below, (42)) and

are also linked to actin. Thus an important role of actin in

vesicle mobility might be masked by synapsin tethers and

disruption of actin alone is not enough to increase vesicle

mobility. To test this model we aimed at releasing vesicles

from synapsins.

Block of phosphatases drastically increases
vesicle mobility

It has been shown that the broadband phosphatase blocker

okadaic acid (OA) disperses the presynaptic vesicle cluster in

frog neuromuscular junction (43). Similarly OA leads to a

spreading of fluorescence in hippocampal terminals labeled

with a fluorescently tagged antibody against the lumenal do-

main of the vesicle protein synaptotagmin (44). Interestingly,

OA also blocks the myosin light chain phosphatase (45).

Application of OA to hippocampal boutons increases

fluctuations in the range of 0.1–5 Hz (Fig. 6, a–c). Further-

more we observe a significant increase in the variance-over-

mean ratio (Table 1).

In fact it has been shown that OA also destabilizes actin

(46). This shift in modes should be pronounced if OA is

applied along with LB. Powerspectral analysis of such ex-

periments is shown in Fig. 6 d. The mobility can be further

increased with increasing concentrations of LB in a dose-

dependent manner (see Fig. 6 d and Table 1).

Although the application of LB alone does not influence

mobility, LB shows a drastic effect in combination with OA.

It seems that vesicles have to be freed from some sort of

tether by OA before a role of actin in mobility becomes

apparent. This ‘‘tether’’, likely to be synapsin, could even

link vesicles among each other. The OA effect was some-

what more difficult to model and can be described assuming

D ¼ 5 3 10�4 mm2/s and a cage diameter of 30 nm. An

even better simulation is obtained if 75% of vesicles have a

FIGURE 4 Movement of synaptic vesicles is con-

trolled by MLCK. (a) and (b) Exemplar time series of

boutons stained with FM 1–43 (15 mm) by 120 APs (at

10 Hz) before (a) and after application of 15 mM ML7

(the data were already high-pass filtered at 0.05 Hz). (c)

Simulated fluorescence time series for control vesicles.

(d) Simulated fluorescence time series for ML-7. (e)

Respective averaged power spectra for control and in

the presence of 15 mM ML-7. For power spectral

analysis of fluorescence traces, the average value was

subtracted and the data were high-pass filtered at 0.05

Hz to remove slow trends in the data that could arise

from stage drift or slow movements of boutons. ( f )

Shown are the same PSDs as in the left panel, but

overlaid are results from simulations with diffusion

coefficient D ¼ 5 3 10�5 mm2/s and a cage size of

50 nm (blue circles). Mean fluorescence for this sim-

ulation is 11.2 kcps and the variance 0.96 kcps2

(as expected for control cells, see Fig. 1). Simulation

for the same cage size but with diffusion coefficient

doubled to D ¼ 1 3 10�4 mm2/s is shown in gray

(rhombs). The PSD is shifted upwards, and the

variance increases to 2.02 kcps2. The mean fluores-

cence is 11.3 kcps for this simulation. Red circles show

the PSD of experiments after ML-7 treatment (cf. left

panel). A simulation with D ¼ 5 3 10�6 mm2/s (10-

fold lower than control) and a cage size of 50 nm

(orange circles) mimics experimental ML-7 data quite

well. The mean fluorescence for this simulation was

11.5 kcps and the variance 0.17 kcps2.
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D ¼ 5 3 10�5 mm2/s like control and 25% a 100-fold

higher D value (Fig. 6 e). Such large changes in single vesicle

mobility are expected for OA from previous FRAP ex-

periments, which indicated that vesicles after OA treatment

can even diffuse across the whole bouton within minutes

(17), implying that they can leave or move together with

the cage. Such slower processes, however, had to be dis-

carded in our model and experimental analysis since they

occur on timescales where whole bouton movements might

contribute to fluctuations (.20 s).

For a given diffusion coefficient such as for control con-

ditions, the variance increases only weakly with cage size.

This is due to the necessary high-pass filtering of the data (see

supplementary Fig. S10) resulting in an uncertainty in cage

size estimation by a factor of ;2. Increasing the diffusion

coefficient for control conditions twofold results already in

a detectable change in the PSD and the variance (cf. Fig. 4 f ).
Our model simulations provide a good framework to

describe mobility in synaptic vesicle clusters in quantitative

terms, and they show that even subtle changes in mobility of

very few vesicles within the otherwise rather static vesicle

cluster can be picked up by confocal spot detection.

DISCUSSION

We showed that confocal spot detection is a sensitive

technique to monitor vesicle mobility and movement in

small central nervous synapses in real time. By using an

independent approach for determining the number of par-

ticles in the detection volume we could show that standard

FCS analysis with models of freely and independently dif-

fusing particles cannot be applied to describe movements of

large organelles like synaptic vesicles in living cells as some-

what expected considering the tight clustering of vesicles

in a hippocampal bouton. Instead, PSD and variance-over-

mean analysis not requiring a priori knowledge for qualitative

interpretation proved to be superior for characterizing vesicle

mobility.

Fluorescence fluctuation spectroscopy (FFS) bolstered by

Monte Carlo simulations allowed us to propose a realistic

model of confined diffusion for vesicle mobility in the syn-

aptic vesicle cluster and quantifying vesicle mobility under

different conditions, which was so far not possible for small

hippocampal synapses. Changes in vesicle mobility can be

easily explained by a change of the local diffusion coefficient

and/or the size of the confined region (cage). Even subtle

changes of the diffusion constant are easily observed in spot

confocal measurements by examining only two characteristics,

the power spectral density and the variance-over-mean ratio.

Alternatively our data could be described by assuming

a significant immobile fraction of vesicles. We then obtained

a mobile fraction of only ;2–4% for control cells, which

could be increased to ;8% by application of OA (Fig. 6 and

Table 1). This seems at odds with FRAP experiments in

FIGURE 5 Acute staurosporine treatment and dis-

ruption of actin or tubulin alone does not affect vesicle

mobility. (a) Averaged power spectra for control con-

ditions and for acute application of 1 mM staurosporine.

(b) Averaged power spectra for control conditions and

after 1 h preincubation (at 37�C) 1 mM staurosporine

(lower trace). (c) Averaged PSD for control conditions

and application of 10 mM CD. (d ) Averaged PSD for

control conditions and application of 25 mM LB.
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neuromuscular junction, which showed a large increase in

vesicle mobility after OA treatment (43). Furthermore, since

only ;3 vesicles are present in the detection volume, we

expected to see fluorescence bursts if a mobile vesicle hap-

pens to pass the detection volume. At last, a fast recovery of

fluorescence originating from mobile vesicles was also not

visualized in FRAP experiments in hippocampal boutons

(16). However, this could reflect a shortcoming of the FRAP

method as the small mobile fraction of 4% might have been

lost during the bleaching pulse. More likely, however, the

concept of freely diffusing particles on an immobile back-

ground does not hold for a tightly packed synaptic vesicle

cluster.

The results obtained for ML-7 show that vesicle mobility

is active. This was already suggested by previous studies

where vesicle dynamics, however, could not be observed

directly. The mobility of vesicles within the cage at resting

conditions can be formally described by diffusion, which

does not exclude the possibility that vesicles are anchored at

certain positions with a certain force or are actively trans-

ported in a stochastic fashion. Our results from the experi-

ments using OA and latrunculin are in favor of a model

where vesicles are linked to each other by synapsins. Since

readying recycling vesicles for fusion requires removing the

synapsin cross-links, another element is needed for confining

or guiding their movement to prevent dispersal and loss from

the cluster or even bouton. Our experiments support a role

for actin as cage (47) but also argue for a function as guiding

track. This function, however, is only unmasked in a con-

centration-dependent manner after removal of synapsins by

CaMKII-dependent phosphorylation or block of phophatases

by OA.

All data are well in line with our model of confined

diffusion. Very slow processes, which are likely to be of less

physiological relevance for fast synaptic transmission, are

not included in our model because they could not be sep-

arated from whole-bouton movement or remodeling in our

experiments. Certainly, our model does not describe all fea-

tures of vesicle mobility under resting conditions or the shown

drug applications. But we find it very intriguing that this sim-

ple model can explain quite well the measured data showing

that vesicle mobility on a timescale of 20 s is dominated by

restricted stochastic movements.

Other powerful imaging methods like total internal reflec-

tion fluorescence microscopy are unfortunately not yet ap-

plicable to the study of these small central nervous system

synapses. It is interesting to note that in preparations where it

could be applied, rather immobile secretory granules or

vesicles at the membrane displayed confined diffusion with

diffusion constants and cage sizes very similar to those

FIGURE 6 OA treatment increases observed fluctua-

tions. (a) Respective ensemble-averaged power spectra

after application of 5 mM OA reveal a large increase in

vesicle mobility compared to control conditions. (b)

Exemplar time series of individual resting boutons

after application of 5 mM OA to the bathing medium.

OA was applied for at least 25 min. (c) Exemplar

simulated fluorescence time series for OA vesicles with

two populations with different diffusion coefficients

(cf. panel e, PSD with blue circles). (d) In the presence

of 5 mM OA, increasing concentrations of LB

(preincubated for 1 h) substantially increase vesicle

mobility in a dose-dependent manner: control; 5 mM

OA; 5 mM OA 1 1 mM LB; 5 mM OA 1 10 mM LB,

5 mM OA 1 25 mM LB. (e) PSD of experiments after

OA treatment in red. Superimposed (gray rhombs) is

a simulation with D ¼ 5 3 10�4 mm2/s and a cage size

of 30 nm with mean ¼ 12.7 kcps and variance ¼ 1.80

kcps2. Shown in blue circles is a simulation where 75%

of the vesicles were modeled using control parameters

(D ¼ 5 3 10�5 mm2/s, cage size ¼ 50 nm), but 25%

had a 100-fold higher diffusion coefficient (5 3 10�3

mm2/s) and a cage size of 50 nm. The mean intensity

for this simulation is 12.0 kcps, and the variance is

2.17 kcps2. Experimental PSD (black squares) is shown

for comparison.

2100 Jordan et al.

Biophysical Journal 89(3) 2091–2102



reported here. Steyer and coworkers found for granule mo-

tion in endocrine cells diffusion constants as low as D¼ 2 3

10�4 mm2/s and cage sizes ;70 nm (48). The FRAP method

has been used for studying vesicle mobility in small

synapses, but it has not been possible so far to derive

a quantitative model for vesicle mobility. Most of our

knowledge on vesicle mobility in small hippocampal

synapses so far was inferred either from exoendocytosis mea-

surements or from studies of other model systems.

Besides this, FFS offers several other advantages: a

sensitivity down to very few and/or even single vesicle level

and a time resolution down to milliseconds. However, be-

sides its great potential for investigating synaptic structure

and function, confocal spot detection has some short-

comings. We were only able to assign average cage sizes and

diffusion coefficients and could not differentiate, e.g., between

vesicles docked at the active zone or positioned in the middle or

periphery of the vesicle cluster as any spectroscopic technique

in general lacks spatial information. If, however, vesicles

belonging to specific pools could be stained selectively, spot

confocal detection would also allow studying the mobility of

vesicles in individual pools and thus open up an avenue to

elucidate the mechanisms of postendocytic vesicle trafficking in

small central nervous synaptic boutons. This study, however,

was only carried out in resting boutons. An extension to bou-

tons during stimulation will require an extension of the theory to

the nonstationary case.

The method can certainly be easily adjusted for studying

dynamics in larger synapses like calyx of held or frog neu-

romuscular junction preparations. It only requires a standard

fluorescence correlation spectroscopy setup and can thus be

easily adapted by all researchers interested in vesicle dy-

namics. This method might be especially suited for screening

for altered vesicle mobility in null-mutant mice where side

effects on exoendocytosis might have masked a major role in

mobility, thus leading to opposing results in electrophysio-

logical recordings for different experimental conditions.
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